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Abstract

Learning visual features from unlabeled image data is

an important yet challenging task, which is often achieved

by training a model on some annotation-free information.

We consider spatial contexts, for which we solve so-called

jigsaw puzzles, i.e., each image is cut into grids and then

disordered, and the goal is to recover the correct configura-

tion. Existing approaches formulated it as a classification

task by defining a fixed mapping from a small subset of

configurations to a class set, but these approaches ignore

the underlying relationship between different configurations

and also limit their applications to more complex scenarios.

This paper presents a novel approach which applies to

jigsaw puzzles with an arbitrary grid size and dimension-

ality. We provide a fundamental and generalized principle,

that weaker cues are easier to be learned in an unsupervised

manner and also transfer better. In the context of puzzle

recognition, we use an iterative manner which, instead of

solving the puzzle all at once, adjusts the order of the

patches in each step until convergence. In each step, we

combine both unary and binary features of each patch

into a cost function judging the correctness of the current

configuration. Our approach, by taking similarity between

puzzles into consideration, enjoys a more efficient way of

learning visual knowledge. We verify the effectiveness of

our approach from two aspects. First, it solves arbitrarily

complex puzzles, including high-dimensional puzzles, that

prior methods are difficult to handle. Second, it serves as a

reliable way of network initialization, which leads to better

transfer performance in visual recognition tasks including

classification, detection and segmentation.

1. Introduction

Deep learning especially convolutional neural networks

has been boosting the performance of a wide range of

∗This work was partly done when the first author was interning at Johns

Hopkins University and Huawei Noah Ark’s Lab.
†Lingxi Xie is the corresponding author.

Figure 1. We study the problem of solving jigsaw puzzles for

visual recognition. Compared to the previous work [31] working

on 1,000 fixed configurations of 3 × 3 puzzles, our method can

generalize to arbitrary configurations of 2D and 3D puzzles.

applications in computer vision [24]. These statistics-

based approaches build hierarchical structures which con-

tain a large number of neurons, so that visual knowledge

is learned by fitting labeled training data [21]. However,

annotating a large-scale dataset is often difficult and ex-

pensive. Therefore, weakly supervised or unsupervised

learning has attracted a lot of research attentions [48, 23].

These approaches are often built on some naturally exist-

ing constraints such as temporal consistency [47], spatial

relationship [8] and sum-up equations [32]. Such informa-

tion, though being weak, constructs loss functions without

requiring annotations, and networks pre-trained in this way

can either be used for weak visual feature extraction [47]

or fine-tuned in a standalone supervised learning process

towards better recognition performance [10].

In this work, we focus on a specific way of exploit-

ing spatial relationship, which is to solve so-called jigsaw

puzzles in unlabeled image data [31, 33, 44, 3]. These

approaches work by cutting an image into a grid, say, 3×3,

of patches and then disordering them as training data, with
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the goal to recover its correct spatial configuration. Ex-

amples are shown in Figure 1. Thus, in order to achieve

this goal, the network should have the ability to capture

some semantic information, e.g., learning the concept of car

and ground, though not labeled, knowing that car always

appears above ground. Technically, these approaches sim-

ply assigned each configuration a unique ID, so that puzzle

recognition turns into a plain classification problem.

We point out two major drawbacks of this strategy. First,

a plain classifier takes an assumption that all configurations

are equally similar to each other, which is not true even

when inter-class distances are maximized using a greedy

algorithm [31]. This brings a negative impact to represen-

tation learning. Second, the number of parameters required

for plain classification increases linearly with the number of

configurations, so that it is difficult to deal with all possible

configurations due to the risk of over-fitting. For example,

there are 9! = 362,880 possible configurations for a 3 × 3
puzzle, but the original approach [31] reached the best per-

formance at 1,000 and observed over-fitting when this num-

ber continues growing. Both of these drawbacks limit us

from generalizing this approach to more complex puzzles.

On the other hand, solving complex puzzles is especially

useful for some areas such as medical imaging analysis,

in which it is difficult to pre-train 3D networks [5, 28] in

2D scenarios, yet a reasonable initialization helps a lot on

training stability and testing performance. An empirical

study of this topic can be found in Section 4.3.

In this paper, we extend the ability of such approaches by

allowing to solve arbitrary jigsaw puzzles, i.e., the puzzles

are not constrained by a pre-defined set of configurations.

Our improvement lies in two parts. First, we allow the

jigsaw puzzles to have an arbitrary configuration rather

than being limited in a fixed set. Second, we introduce

an iterative solver built upon weak spatial constraints to

replace the direct classifier used previously. As a result,

our approach extends the ability of representation learning

based on jigsaw puzzles and transfers well to 3D data. To

this end, we formulate puzzle recognition into an optimiza-

tion problem which involves a set of unary and binary terms,

with each unary term indicating whether a specified patch

is located at a specified position, and each binary term

measuring whether two patches should have a specified

relative position. These terms are determined by a deep

network backbone so that the entire system can be trained

in an end-to-end manner. In both training and testing, we

allow the first trial not to find the correct configuration, in

which case we iteratively adjust the configuration according

to prediction until convergence.

We evaluate our approach in both puzzle recognition

and transfer learning. The puzzle solver is trained on

ILSVRC2012 training set [43] and tested on the validation

set, both of which do not contain class labels. Our approach

solves arbitrary jigsaw puzzles with reasonable accuracy,

while the prior approaches can only work on a limited set

of puzzles. Then, we transfer the pre-trained model to be

fine-tuned on the Pascal VOC 2007 dataset [11] for image

classification and object detection. Either learning from

more complex puzzles or achieving higher accuracy in puz-

zle recognition boosts transfer learning performance, which

verifies our motivation. Finally, we apply our approach to

initialize a 3D network with unlabeled medical data, and

verify its effectiveness in segmenting an abdominal organ

from CT scans.

The remainder of this paper is organized as follows.

Section 2 briefly reviews related work, and Section 3 de-

scribes the proposed approach. After experiments shown in

Section 4, we draw our conclusions in Section 5.

2. Related Work

Deep neural networks have been playing an important

role in modern computer vision systems. With the availabil-

ity of large-scale datasets [7] and powerful computational

device such as GPUs, researchers have designed network

structures with tens [21, 45, 46] or hundreds [16, 17] of

layers towards better recognition performance. Also, the

networks pre-trained on ImageNet were transferred to other

recognition tasks by either extracting visual features di-

rectly [9, 15, 37] or being fine-tuned on a new loss func-

tion [27, 38]. Despite their effectiveness, these networks

still strongly rely on labeled image data. However in

some areas such as medical imaging, data collection and

annotation can be expensive, time-consuming, or requiring

expertise. Thus, there has been efforts to design unsu-

pervised [48, 23] or weakly supervised [18] approaches

which learn visual knowledge from unlabeled data, or semi-

supervised learning algorithms [34, 35] which aim at com-

bining a limited amount of labeled data and a large corpus of

unlabeled data towards better performance. It has been ver-

ified that unsupervised pre-training helps supervised learn-

ing especially deep learning [10].

The key factor to learning from unlabeled data is to

establish some kind of prior, or some weak constraints that

naturally exist, i.e., no annotations are required. Such prior

can be either (1) embedded into the network architecture or

(2) encoded as a weak supervision to optimize the network.

For the first type, researchers designed clustering-based

approaches to optimize visual representation [50, 4], as well

as generator-based approaches [36, 54].

This paper mainly considers the second type which, in

comparison to the first type, is much easier in algorithmic

design. Typical examples include temporal consistency

which assumes that neighboring video frames contain simi-

lar visual contents [47, 12], the temporal order in the context

of video [29, 2, 25], spatial relationship between some

pairs of unlabeled patches [8], learning an additive function
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on different regions as well as the entire image [32], etc.

Among these priors, spatial contexts are widely believed

to contain rich information which a vision system should

be able to capture. Going one step beyond modeling patch

relationship [8], researchers designed so-called jigsaw puz-

zles [31, 33, 44, 3] which are more complex so that the

networks are better trained by learning to solve them.

Researchers believed that learning from these weakly-

supervised cues can help visual recognition, because many

problems are indeed built on understanding and integrating

this type of information. Regarding spatial contexts, a wide

range of recognition tasks can benefit from understand-

ing the relative position of two or more patches, such as

image classification [1], semantic segmentation [42] and

parsing [52], etc.

3. Our Approach

3.1. Problem and Baseline Solution

The problem of puzzle recognition assumes that an im-

age is partitioned into a grid (e.g., 3 × 3) of patches and

then disordered. The task is to recover the original config-

uration (i.e., patches are ordered in the natural form). To

accomplish this task, the network needs to understand what

a patch contains as well as how two or more patches are

related to each other (e.g., in a car image, a wheel is often

located to the top of the ground). Therefore, we expect

this task to teach a network both intra-patch and inter-patch

information, which we formulate as unary terms and binary

terms, respectively.

We first define the terminologies used in this paper. Let

I be an image, which is partitioned into W × H patches.

Each patch, denoted as ix,y (0 6 x < W , 0 6 y < H), is

assigned a unique ID ax,y ∈ {0, 1, . . . ,WH − 1} accord-

ing to its original position, e.g., the row-major policy gives

ax,y = x+ yW . After that, all patches are randomly disor-

dered, and we use c⋆x,y to denote the ID owned by the patch

that currently occupies the (x, y) position. All c⋆x,y values

compose a configuration, denoted as c⋆ =
(

c⋆x,y
)W,H

x=0,y=0
.

There are in total (WH)! different configurations, compos-

ing the configuration set C that |C| = (WH)!.
Our goal is to predict the correct configuration c⋆ ∈ C.

For this purpose, a network structure with two parts was

constructed [31]. The network backbone M
B : fx,y =

f
(

ix,y;θ
B
)

is built upon each individual patch, and outputs

a set of features for the network head M
H : c = g

(

F;θH
)

to produce the final output c = (cx,y)
W,H

x=0,y=0, where

F = (fx,y)
W,H

x=0,y=0 is the ordered concatenation of patch

features. In practice, f
(

·;θB
)

is often borrowed from

existing network architectures [21, 45, 16], while g
(

·;θH
)

is often more interesting to investigate.

In the prior work [31, 33], the network head worked

by constraining the number of possible configurations, say

K = 1,000 out of 9!, which are randomly sampled from

C using a greedy algorithm to guarantee the Hamming dis-

tance between any two configurations is sufficiently large.

Then, f
(

·;θH
)

was designed to be a K-way classifier,

implemented as a fully-connected layer. The purpose of

this design was mainly to control the number of parameters

of the classifier (proportional to K) so as to prevent over-

fitting1, but we argue that it largely limits the model from

being applied more complex scenarios like 3D puzzles,

while it was believed that learning from a harder task can

lead to a stronger ability [6]. This motivates us to propose

a new approach in which the number of configurations can

be arbitrarily large while the number of parameters remains

unchanged. We will see later that the essence behind this

motivation is to use weak cues with an iterative algorithm

towards a more compact representation and a safer learning

process.

3.2. Solving Jigsaw Puzzles with Weak Cues

We design a network head to learn weak spatial con-

straints. By “weak” we are comparing this strategy with the

aforementioned K-way classifier that predicts the configu-

ration of the entire puzzle all at once. Instead, we consider

an indirect cost function S(I, c) which outputs a cost that

patch ix,y or equivalently feature fx,y is located at position

cx,y , and thus the most probable configuration is determined

by argmaxc {S(I, c)}. S(I, c) is composed of two parts,

namely, unary terms and binary terms. Each unary term

provides cues for the absolute position of a patch, and each

binary term provides cues for the relative position of two

patches. Mathematically,

S(I, c) ≡ S(F, c) =
∑

(x,y)

p1(fx,y, cx,y | F)+

∑

(x1,y1) 6=(x2,y2)

p2(fx1,y1
, fx2,y2

, cx1,y1
, cx2,y2

). (1)

Here, p1(fx,y, cx,y | F) is a unary term which measures

how likely that patch fx,y is located at position cx,y , and

p2(fx1,y1
, fx2,y2

, cx1,y1
, cx2,y2

) is a binary term measures

how likely that patches fx1,y1
and fx2,y2

have the spatial

relationship indicated by cx1,y1
and cx2,y2

. Each unary term

is computed based on F, the overall variable containing

feature vectors of all patches, because the position of each

1[31] observed that setting a larger K leads to performance drop in

transfer experiments, and explained it as the network gets confused by

very similar jigsaw puzzles. However, as shown in experiments (see

Section 4.2), our approach works well in the entire puzzle set C, i.e.,

K = 9! = 362,880, which implies that the performance drop may due

the large number of parameters.
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Figure 2. The overall structure (best viewed in color). Each training image (without semantic annotations) is randomly cropped, disordered

and fed into puzzle recognition network. Two types of loss terms (unary and binary) are computed and summed into the final cost function

S(I, c). The training process continues until the puzzle is completely correct or a maximal number of rounds is achieved.

patch fx,y depends on the visual messages delivered by

other patches. The binary terms, on the other hand, do not

have such a dependency.

In practice, the unary terms are formulated in a matrix U

with WH×WH elements, each of which, JUKa,c, indicates

the cost obtained by putting the specified patch with ID

a at a specified position with ID c. This is implemented

by a fully-connected layer between F and these (WH)
2

elements, parameterized by θ
U. We perform the softmax

function over all elements in each row, so that the scores

corresponding to each patch sum to 12. Then, each unary

term is the log-likelihood of the score at a specified position:

p1(fx,y, cx,y,F) = − ln
r
U
(

F;θU
)z

ax,y,cx,y

. (2)

For each binary term involving fx1,y1
and fx2,y2

, we

build another mapping from these two vectors to a 9-

dimensional vector, with each index indicating the probabil-

ity that the spatial relationship of fx1,y1
and fx2,y2

belongs

to one of the 9 possibilities, namely, the first patch is located

to the top, bottom, left, right, top-left, top-right, bottom-

left, bottom-right of the second patch or none of the above

happens. Similarly, this is implemented using another fully-

connected layer between fx2,y2
⊕fx2,y2

(⊕ denotes concate-

nation) and a 9-dimensional vector parameterized by θ
V

2Ideally, the elements in each column should also sum to 1, but it

is mathematically intractable if we hope to keep the ratio between all

elements. There are two arguments. First, after normalizing scores in each

row, we find that there often exists one major elements in each column,

and the sum of each column is close to 1. Second, we add an additional

ℓ1 loss term between the sum of each column and 1, but only observe to

minor changes in either puzzle recognition accuracy or transfer learning

performance.

followed by a softmax activation over these 9 numbers. We

denote rx1,y1,x2,y2

.
= r(cx1,y1

, cx2,y2
) ∈ {0, 1, . . . , 8} as

the relative position type between fx1,y1
and fx2,y2

, so that

we can write the binary term as:

p2(fx1,y1
, fx2,y2

, cx1,y1
, cx2,y2

) =

− ln
r
V
(

fx1,y1
, fx2,y2

;θV
)z

rx1,y1,x2,y2

. (3)

Compared to a plain classifier assigning a class index

to each puzzle, the amount of parameters required by our

approach is reduced. Take a 3×3 puzzle as an example, and

we assume that F contains D elements. On the one hand,

the K-way classifier requires KD parameters (a typical set-

ting [31] is K = 1,000) which grows linearly with K. On

the other hand, our approach requires (WH)
2
D parameters

for the unary terms, and 9D parameters for the binary terms.

The total number of parameters,
(

W 2H2 + 9
)

D (e.g., 90D
for a 3× 3 puzzle), is largely reduced and does not increase

with K. Consequently, our approach is easier to be applied

to the scenario with a larger set of (e.g., all 9! possible)

configurations. This advantage is verified in experiments.

Last but not least, there are many other ways of using

weak spatial constraints to formulate S(I, c) – we just pro-

vide a practical example.

3.3. Optimization: Iterative Reorganization

We aim at optimizing S(F, c) with respect to network

parameters θ
U, θ

V and configuration c. However, note

that c is a discrete variable which cannot be optimized by

gradient descent. So we apply different strategies in training

and testing.
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In the training stage, we know the ground-truth configu-

ration c⋆, so the optimization becomes:

arg min
θU,θV

S(F, c⋆) . (4)

This is implemented by setting the supervision signal ac-

cordingly, i.e., the correct cells are filled up with 1 while

others with 0, and using stochastic gradient descent. Note

that each unary term depends on the order of input patches.

To sample more training data as well as adjust data distribu-

tion (explained later), we introduce iteration to the training

stage. Denote the input configuration as c(0) = c⋆, and the

corresponding feature as F(0). In each iteration, with fixed

θ
U and θ

V, we maximize S(F, c) with respect to c:

c′ = argmin
c

S
(

F, c(0)
)

, (5)

and use c′ to find the next input c(1), so that applying c′ to

c(1) obtains c(0), e.g., if c′ is perfect, then c(1) corresponds

to the original configuration that every patch is placed at the

correct position. This process continues until convergence

or a maximal number of iterations is reached. The losses

with respect to θ
U and θ

V are accumulated, averaged, and

back-propagated to update these two parameters. The same

strategy, iteration, is used at the testing stage to solve jigsaw

puzzles, with the only difference that no gradient back-

propagation is required.

It remains a problem to solve Eqn (5). This is a com-

binatoric optimization problem, as c can only take (WH)!
discrete values which indicate the entries in U and V that

are summed up. There is obviously no closed form so-

lutions to maximize S(F, c), yet enumerating all (WH)!
possibilities is computationally intractable especially when

the puzzle size becomes large. A possible solution lies in

approximation, which first switches off all binary terms, so

that the optimization becomes choosing WH entries from

a WH × WH matrix with a maximal sum, but no two

entries can appear in the same row or column (this is a max-

cost-max-matching problem, and the best solution c̃ can be

found using the Hungarian algorithm); then enumerates all

possibilities within a limited Hamming distance from c̃ and

chooses the one with the best overall cost S(F, c).
Finally, we discuss strategy of introducing iteration to

solve this problem. Mathematically, Eqn (5) is a fixed-

point model [26], i.e., the output variable c also impacts F

and thus S(F, c), so iteration is considered a regular way

of optimizing it. However, the roles played by iteration

are different in training and testing. In the training stage,

after each iteration, we shall expect the configuration to be

adjusted closer to the ground-truth. Therefore, if we take

the input configuration fed into each round as an individ-

ual case, then the distribution of input data is changed by

iteration, and the cases that are more similar to the ground-

truth are more likely to be sampled. Therefore, in the

testing stage, we can expect the iteration to improve puzzle

recognition accuracy, because as the iteration continues, the

input puzzle gets closer to the ground-truth by statistics, and

our model sees more training data in this scenario and is

stronger. We show a typical example in Figure 3, in which

we can observe how iteration gradually predicts the correct

configuration.

4. Experiments

4.1. Jigsaw Puzzle Recognition

We follow [31] to train and evaluate puzzle recognition

on the ILSVRC2012 dataset [43], a subset of the ImageNet

database [7]. We train the model using all the 1.3M training

images and test it on the validation set with 50K images,

both of which do not contain class annotations.

In the training stage, we pre-process the images to pre-

vent the model from being disturbed by pixel-level informa-

tion. We first determine the size of puzzles, e.g., W × H ,

and then resize each input image into 85W × 85H and

partition it evenly into a W × H grid. In each 85 × 85
image, we randomly crop a 64 × 64 subimage as the patch

fed into the puzzle recognition network. To maximally

reduce the possibility that low-level information is used, we

further horizontally flip each input patch with a probability

of 50% and subtract mean value from each channel – we

do not perform other data augmentation techniques because

they are less likely to appear in real data. In practice, flip

augmentation brings consistent accuracy gain to transfer

learning tasks though we observe significant accuracy drop

in puzzle recognition (see Table 1).

The backbone of our puzzle network is borrowed from

two popular architectures, namely, an 8-layer AlexNet [21]

and two deep ResNets [16] with 18 and 50 layers. We

do not evaluate VGGNet [45] as in [22, 33] because it

is more difficult to initialize and produces lower accuracy

than ResNets. The outputs of the first layer with a spatial

resolution of 1 × 1 (i.e., fc6 in AlexNet and avg-pool in

ResNets) are fed into a 1,024-way fully-connected layer and

the output is taken as fx,y , followed by our designed layers

for extracting unary and binary terms for puzzle recogni-

tion. All these networks are trained from scratch. We use

the SGD optimizer and a total of 250K iterations (mini-

batches) for AlexNet and 350K for ResNets. Each batch

contains 256 puzzles. On four NVIDIA Titan-V100 GPUs,

the training times on AlexNet, ResNet18 and ResNet50 are

10, 20 and 60 hours, respectively.

In the testing stage, to reduce randomization factors, we

switch off randomization in patch cropping and data aug-

mentation, with each 64× 64 patch cropped at the center of

the 85×85 fields and not flipped. Results are summarized in

Table 1. We first evaluate 3×3 puzzle recognition accuracy.

For each image, there are 9! = 362,880 possible puzzles, so
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Setting Pre-training Options Puzzle Recognition Pascal VOC 2007

ID Size Backbone Label Unary Binary Mirror Correct D 6 2 Classifi. Detec.

(a) 3× 3 AlexNet X − − 78.2 56.8

(b) 3× 3 AlexNet − − 53.3 43.3

(c) 3× 3 AlexNet X 32.2 48.2 66.6 51.8

(d) 3× 3 AlexNet X X 3.4 15.4 68.1 51.9

(e) 3× 3 AlexNet X X X 3.8 17.1 68.3 52.5

(f) 2× 2 AlexNet X X X 74.5 90.5 64.2 49.1

(g) 3× 3 ResNet18 X − − 84.5 68.3

(h) 3× 3 ResNet18 − − 41.3 24.8

(i) 3× 3 ResNet18 X 44.7 61.5 72.5 58.7

(j) 3× 3 ResNet18 X X 5.2 20.4 72.9 58.7

(k) 3× 3 ResNet18 X X X 5.5 21.0 74.7 58.8

(l) 3× 3 ResNet50 X − − 86.4 70.2

(m) 3× 3 ResNet50 − − 46.8 23.5

(n) 3× 3 ResNet50 X 47.3 63.6 72.4 55.2

(o) 3× 3 ResNet50 X X 4.9 20.4 73.1 55.5

(p) 3× 3 ResNet50 X X X 5.2 20.8 75.3 56.2

Competitors with Different Backbones, Pre-training Cues and Settings

Ref. Year Backbone Description of unsupervised training Classifi. Detec.

[8] 2015 AlexNet Determining the relative spatial position of two patches 65.3 51.1

[47] 2015 AlexNet Unsupervised tracking in videos 63.1 47.2

[31] 2016 AlexNet 3× 3 jigsaw puzzles with a 1,000-way plain classifier 67.7 53.2

[22] 2017 ResNet152 Predicting color from gray-scale intensity 77.3 −

[32] 2017 AlexNet Counting visual primitives in subregions 67.7 51.4

[4] 2018 AlexNet Classifying after clustering iteratively 73.7 55.4

[13] 2018 AlexNet Predicting 2D image rotations 73.0 54.4

[30] 2018 AlexNet [8] with enhancement techniques 69.6 55.8

[33] 2018 VGGNet16 [31] with knowledge distillation and noisy patches 72.5 56.5

[39] 2018 AlexNet Predicting surface normal, depth, and instance contour 68.0 52.6

Table 1. Puzzle recognition and transfer learning accuracy (%). In the pre-training options, “labeled” means to use the annotated

ILSVRC2012 training set to pre-train a network. The instances without any Ximply that Pascal VOC 2007 tasks are trained from scratch.

We also compare with prior approaches, some of which have different knowledge sources, network backbones and training strategies. We

report the most powerful network backbone used in each paper. The works with puzzle recognition are highlighted in green.

random guess gives a 0.0003% accuracy. With only unary

terms (Eqn 5 can be solved by the Hungarian algorithm),

all network backbones achieve over 30% accuracy without

mirror augmentation, which shows that weak visual cues

can be combined to infer global patch contexts.

On top of this baseline, we investigate the impact of

other four options. First, adding binary terms consistently

improves puzzle recognition accuracy, arguably due to the

additional contextual information, which is especially use-

ful in determining the relative position of two neighbor-

ing patches. Second, mirror augmentation reduces puz-

zle recognition accuracy dramatically in both training and

testing, but as we will see later, this strategy improves the

generalization ability of our pre-trained models to other

recognition tasks. Third, compared with 2 × 2 puzzles,

3×3 jigsaw puzzles are naturally more difficult to solve, but

they also force the model to learn more visual knowledge

and thus help transfer learning, as shown in our later dis-

cussions. Fourth, the above phenomena remain the same

as the network backbone becomes stronger, on which both

puzzle recognition and transfer visual recognition becomes

more accurate.

As a side comment, we point out that conventional puz-

zle recognition approaches with plain classification [31, 33]

often achieved higher puzzle recognition accuracy in a lim-

ited class set. With models trained with our approach (Line

(e) in Table 1) we enumerate the 1,000 classes generated

with algorithm provided by [31] and find the maximal

S(F, c), so as to mimic the behavior of plain classification.

Our models with AlexNet reports a 60.2% puzzle recog-

nition accuracy which is lower than 71% reported in [31].

However, our approach enjoys better transfer ability, as we

will see in later experiments. In addition, the performance

of [31] degenerates with increased puzzle size, as the frac-

tion of explored puzzles becomes smaller, yet the weakness

of ignoring underlying relationship between different con-

figurations becomes more significant and harmful. From

this perspective, the advantage of solving arbitrary puzzles
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Figure 3. Two examples of different difficulties in iterative puzzle recognition (best viewed in color). Each digit to the lower-left corner of

each patch is the corresponding patch ID. For each round, we also report puzzle recognition statistics over the entire testing set.

Unary Binary Mirror conv1 conv2 conv3 conv4 conv5

X 18.4 29.0 32.6 31.4 27.5

X X 18.0 29.0 33.5 32.8 29.7

X X X 18.3 28.8 34.4 34.1 30.4

Noroozi et al. [31] 18.2 28.8 34.0 33.9 27.1

X 21.3 30.9 33.5 33.1 29.8

X X 20.9 31.0 34.0 33.6 30.6

X X X 21.6 30.8 34.7 34.2 31.8

Noroozi et al. [31] 23.0 31.9 35.0 34.2 29.3
Table 2. ILSVRC2012 (top) and Places205 (bottom): classifica-

tion accuracy with linear classifiers on top of frozen convolutional

layers of AlexNet.

becomes clearer. The same phenomenon also happens in

3D puzzles (Section 4.3).

Some statistics for our model with ResNet50 (Line (p) in

Table 1) as well as two typical examples are shown in Fig-

ure 3 (one is difficult and not solved). We can observe how

the disordered patches are reorganized with weak spatial

cues throughout an iterative process. As an ablation study,

we experiment with fewer numbers of maximal iterations,

namely 1, 5 and 10 instead of 20, but achieve lower accura-

cies in both puzzle recognition and transfer learning tasks.

This justifies our hypothesis that iteration, together with

weak spatial cues, provides a mild way of unsupervised

learning, which better fits state-of-the-art deep networks.

4.2. Transfer Learning Performance

Next, we investigate how well our models pre-trained

on puzzle recognition transfer to other visual recognition

tasks. Following the conventions [33, 4], we evaluate

classification and detection tasks on the Pascal VOC 2007

dataset [11]. All pre-trained networks undergo a stan-

dard fine-tuning flowchart, with a plain classifier and Fast-

RCNN [14] being used as network heads, respectively. We

do not lock any layers in our network, because this often

leads to worse transfer performance as shown in prior ap-

proaches [31, 4, 13].

Results are summarized in Table 1. We can observe

some interesting phenomena. First, transfer recognition

performance goes up with the power of network backbones,

which shows the ability of our approach to tap the potential

of deep networks. Second, both unary and binary terms

contribute to transfer accuracy and they are complementary.

Third, mirror augmentation harms puzzle recognition but

improves transfer learning, because it alleviates the chance

that deep networks borrow low-level pixel continuity in

solving the jigsaw puzzles which falls into the category of

over-fitting and helps transfer recognition very little.

Here is a side note. It was suggested in [31] that forcing

the network to discriminate very similar puzzles (e.g., only

a pair of patches are reversed) often leads to accuracy drop

because the model can focus too much on local patterns. In

the context of using AlexNet to solve 3×3 puzzles, we study

different numbers of configurations, i.e., 1% (3,629), 10%
(36,288) and all (9! = 362,880) possible puzzles. We find

that our approach reports the best transfer accuracy at the

last option, while using smaller numbers of configurations

leads to slightly worse performance. Hence, we make the

following conjecture: it is indeed the larger number of

parameters in a plain classifier, rather than solving very

similar puzzles, that causes transfer performance drop.

In the last part, we evaluate the quality of features ex-

tracted from the pre-trained models directly. We implement

the standard experiments on the ILSVRC2012 dataset [43]

and Places205 [53] with a linear classifier on top of frozen
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convolutional layers of AlexNet. Results are summarized

in Table 2. Our approach, particularly with binary terms

and mirror augmentation, shows higher numbers with conv5

features. This is in line with our motivation, namely, solv-

ing arbitrary puzzles with weak spatial constraints indeed

improves mid-level representation learning.

4.3. Generalization to 3D Networks

Finally, we apply our model to a 3D visual recognition

task. We study medical imaging analysis, an important

prerequisite for computer-assisted diagnosis (CAD). Most

medical data are volumetric, and researchers have proposed

some 3D network architectures [5, 28]. Compared to 2D

networks [40, 51], 3D networks enjoy the benefit of seeing

more contextual information, but still suffer the drawback

of missing a pre-trained model. Due to the common situ-

ation that the amount of training data is limited, these 3D

networks often have a relatively unstable training process

and sometimes this downgrades their testing accuracy [49].

Our approach provides a solution for initializing 3D

networks with jigsaw puzzles. We investigate the NIH pan-

creas segmentation dataset [41], which contains 82 cases.

We partition it into 4 folds (around 20 cases in each fold),

use three of them to train a segmentation model and test it on

the remaining one. To construct jigsaw puzzles, we either

directly use the training samples in the NIH dataset, or

refer to another public dataset named Medical Segmentation

Decathlon (MSD)3 – the pancreas tumour subset with 282
training cases. For all the data used for jigsaw puzzles, we

do not use any pixel-level annotations though they are pro-

vided. We randomly crop 120× 120× 120 volumes within

each case, and cut it evenly into two puzzle sizes, namely,

2 × 2 × 2 pieces with a 48 × 48 × 48 subvolume cropped

within each cell, or 3 × 3 × 3 pieces with a 32 × 32 × 32
subvolume cropped within each cell. A typical example is

shown in Figure 1. We randomly disorder these patches

using all 8! or 27! possible configurations, and the task is

to recover the original configuration. We use VNet [28]

as the baseline (only the down-sampling layers are used in

this stage), and compute the unary terms in an 8 × 8 or

27 × 27 matrix. We switch off the binary terms based on

the consideration that one patch has 26 neighbors in the 3D

space which makes prediction over-complicated.

Now we recover the complete VNet structure with

randomly-initialized up-sampling layers and start training

on the NIH training set (62 cases) and its subsets. Results

are shown in Table 3 revealing some useful knowledge.

First, pre-training on jigsaw puzzles helps segmentation

especially in the scenarios of fewer training data. Second,

visual knowledge learned in this manner can transfer across

different datasets regardless of the different distributions

in intensity caused by the scanning device. Third, the

3http://medicaldecathlon.com/

Data Scratch
Pre-trained on NIH Pre-trained on MSD

2× 2× 2 3× 3× 3 2× 2× 2 3× 3× 3

10% 65.52 69.36 70.80 68.44 72.24

20% 74.78 76.30 76.50 76.58 77.80

100% 80.96 79.88 81.68 81.48 82.33

Table 3. Pancreas segmentation accuracy (DSC, %) with different

amounts of training data and different initialization techniques. In

each group, the accuracy is averaged over 20 testing cases.

model pre-trained on NIH with 2× 2× 2 puzzles performs

worse than the from-scratch one when tested on 100% data.

We conjecture that solving such puzzles provides a better

initialization, but the domain gap between solving puzzles

and semantic segmentation cancels out the positive effect

of initialization. This raises the necessity of solving more

complex 3×3×3 puzzles which agrees with our motivation.

Fourth, constructing larger and thus more difficult puzzles

improves the basic ability of networks. This shows the value

of our research – it is unlikely for the baseline approach to

sufficiently explore the space of 3×3×3 puzzles, which has

27! ≈ 1.1× 1028 different configurations. Sampling 1,000
configurations with the greedy algorithm described in [31]

downgrades segmentation accuracy to 73.63% and 80.38%
with 20% and 100% data, respectively.

5. Conclusions

This work generalizes the framework of jigsaw puzzle

recognition which was previously studied in a constrained

case. To this end, we change the network head from a plain

K-way classifier to a combinatoric optimization problem

which uses both unary and binary weak spatial cues. This

strategy reduces the number of learnable parameters in the

model, and thus alleviates the risk of over-fitting. The

increased flexibility of pre-training allows us to apply our

approach to a wide range of transfer learning tasks, includ-

ing directly using it for feature extraction, and generalizing

it to the 3D scenarios to provide an initialization for other

tasks, e.g., medical imaging segmentation.

Our study reveals the ease and benefits of learning to

recognize weak visual cues in unsupervised learning, in

which the key problem often lies in finding a compact way

of representing knowledge, e.g., decomposing the entire

puzzle into unary and binary terms. We point out that the

exploration of unsupervised learning is still far from the

end. In the future, we will also apply our method to less

structured data such as graphs [20] and more structured data

such as videos [19], and explore its ability of learning visual

knowledge in an unsupervised manner.
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